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Abstract

Here we consider axially symmetric shear waves propagating from a cylindrical cavity in an incompressible hy-

perelastic solid, whose strain energy function is expressible as a truncated power series in terms of the basic strain

invariants. The solid is assumed to be unbounded. A continuous pulse is initiated at the boundary of the cavity and can

break in finite time. We determine what shock waves can subsequently occur using an approximate solution obtained by

Whitham’s nonlinearization technique. We find that under mild restrictions on the material parameters, a shock wave

develops near the front or back of the pulse, and propagates indefinitely. In addition, a transient shock can occur and

exist for a finite length of time. The set of shock paths will be referred to as the shock pattern. We show how the material

parameters influence the shock pattern. As well, the analysis presented here provides accurate estimates of the breaking

distance and time, and the location of the shock path, for any shock waves that occur. Results of the analysis are

illustrated with numerical solutions obtained using a relaxation scheme for systems of conservation laws.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Axially symmetric shear wave propagation from a cylindrical cavity in an unbounded hyperelastic

material is considered. A wave is initiated at the boundary of the cavity by a continuous pulse of finite

duration time. A continuous wave propagates into the material and can break in finite time. We determine

what possible shock waves can occur and how the material parameters influence their development. The set

of shock paths together with any wavefronts will be referred to as the shock pattern.

The propagation of nonlinear axially symmetric shear waves from a cylindrical cavity was first studied

by Haddow et al. (1987a,b) and Tait et al. (1989). These papers were primarily concerned with obtaining

numerical solutions. The problem of a shock front propagating from a cylindrical cavity was considered by
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Barclay (1999), where formulas for the shock speed and strength were found. Transverse cylindrical waves

had also been considered by Fu and Scott (1991), where a modulated simple wave solution was obtained

and used to fit a shock wave initiated at the boundary of a cylindrical cavity. None of the above papers

analysed the various shock waves that can occur after a continuous wave breaks.
We consider wave propagation into a medium that is assumed to be an incompressible hyperelastic solid,

whose strain energy function is expressible as a power series Ogden (1984),
W ðI1; I2Þ ¼
X1
i;j¼0

CijðI1 � 3ÞiðI2 � 3Þj: ð1:1Þ
The quantities I1 and I2 are the first and second strain invariants and Cij are constants with C00 ¼ 0. Several

special cases of (1.1), which involve only the first few terms, have appeared in the literature. For example,

the special case
W ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ ð1:2Þ
is the strain energy function for the Mooney–Rivlin material, while C01 ¼ 0 in (1.2) results in the Neo-
Hookean strain energy function. In the present work, we employ the strain energy function obtained when

(1.1) is truncated so that maxðiþ jÞ ¼ N þ 1. For this case, the strain energy function has the form
W ¼
XN
k¼0

Xkþ1

i¼0

Ci;k�iþ1ðI1 � 3ÞiðI2 � 3Þk�iþ1
: ð1:3Þ
Numerical values of the material constants Cij in (1.3) have been found for various materials by Alexander

(1968), Tschoegl (1971), James et al. (1975) and Haines and Wilson (1979), using least squares fitting of

experimental data.

In this paper, we determine the shock pattern for axial shear waves. The analysis is essentially the same

for torsional shear waves, while the problem of combined axial and torsional shear wave propagation is

more difficult and requires further investigation.

In Barclay (2004), we obtained and used an approximate solution to estimate the breaking time of a

nonlinear axial shear wave. The approximate solution was constructed using the nonlinearization technique
described in Chapter 9 of Whitham (1974). Here, we use this approximate solution to determine the shock

pattern. Our analysis reveals all the possible shocks that can occur. In addition to shocks which propagate

indefinitely, we discover that another shock can develop and exist for a finite length of time. We call such a

shock, a transient shock. A transient shock path has finite length. A shock with this property had not been

described in the earlier mentioned papers on axially symmetric shear wave propagation. Our results provide

conditions on the material parameters for which a transient shock will or will not exist.

The shock patterns described here are for a disturbance generated at the boundary of the cavity by a

continuously rising boundary value of finite duration time. In order to carry out the analysis, it is necessary
to assume that the derivative of a certain function h related to the boundary value has a particular behavior.

This assumption does not appear to be a severe restriction. We elaborate on this point in Section 3. As well,

for a continuously rising boundary value, all field variables are continuous across the leading wavefront,

and a wavefront expansion can be calculated. As shown by Tait et al. (1989), an axially symmetric shear

wave never breaks at the wavefront. Consequently, a wavefront analysis provides no information con-

cerning the breaking of a wave.

Finally, we illustrate our shock results by numerically solving the system of partial differential equations

governing axially symmetric shear wave propagation. We use the nonoscillatory scheme for systems of
conservation laws proposed by Jin and Xin (1995).
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2. Formulation and approximate solution

In this section, we list the equations governing combined axial and torsional shear wave propagation.

We then summarize the nonlinarized solution for axial shear wave propagation that is used to carry out the
shock pattern analysis in the next section.

Time dependent axially symmetric shear of an incompressible solid is defined by the deformation field
r ¼ R; h ¼ Hþ bðR; tÞ; z ¼ Z þ wðR; tÞ; ð2:1Þ

where ðR;H; ZÞ and ðr; h; zÞ are cylindrical coordinates of a particle in the reference and spatial configu-

rations respectively, and t is time. The governing equations for axially symmetric shear are obtained from

the constitutive equation for an incompressible hyperelastic solid, together with the equations of motion.
We list the relevent equations used here. For a more detailed description of the formulation of the equa-

tions, see Haddow et al. (1987a).

For the deformation field defined by (2.1), the principal invariants of the left Cauchy–Green tensor are
I1 ¼ I2 ¼ 3þ D2; I3 ¼ 1; ð2:2Þ

where
D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðrdÞ2

q
ð2:3Þ
and
� ¼ ow
or

; d ¼ ob
or

: ð2:4Þ
The quantities D, � and d are dimensionless variables. Since I3 ¼ 1, the deformation field is incompressible.

Using the constitutive equation and the strain energy function (1.3), the shear components srh and srz of the
Cauchy stress tensor in cylindrical coordinates are given by
srh ¼ lV ðDÞrd; srz ¼ lV ðDÞ�; ð2:5Þ

where
V ðDÞ ¼ 1þ 2
XN
k¼1

ckD
2k; ð2:6Þ

ck ¼
k þ 1

l

Xkþ1

i¼0

Ci;kþ1�i ð2:7Þ
and
l ¼ 2ðC10 þ C01Þ ð2:8Þ

is the modulus of rigidity for infinitesimal deformation. The components of torsional and axial shear stress in

(2.5) are physical components and similar expressions can be obtained for the remaining four components of

stress. We note that for the material constants Cij found by Alexander (1968), Tschoegl (1971), James et al.

(1975) and Haines andWilson (1979), the corresponding values of the nondimensional quantities ck, k ¼ 1;N
all satisfy jckj � 1 and for many materials have differing signs. For convenience, we let
c ¼ ðc1; c2; . . . ; cN Þ

denote the vector of material parameters and define
kck ¼
XN
k¼1

jckj:
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For the Mooney–Rivlin or Neo-Hookean material c ¼ 0, and the relations in (2.5) are linear.

Employing the equations of motion and introducing the variables
x ¼ ob
ot

; v ¼ ow
ot

; ð2:9Þ
we obtain the system of equations consisting of (2.5) and
osrh
or

þ 2srh
r

¼ qr
ox
ot

; ð2:10Þ

osrz
or

þ srz
r
¼ q

ov
ot

; ð2:11Þ

od
ot

¼ ox
or

;
o�

ot
¼ ov

or
; ð2:12Þ
where q is the constant material density. When c ¼ 0, the system uncouples into two linear systems, one

governing the propagation of axial shear waves and the other governing the propagation of torsional shear

waves, both with wave speed
c ¼
ffiffiffi
l
q

r
:

We consider the propagation of waves from a cylindrical cavity, of radius a, in an unbounded medium

which is initially unstressed and at rest. The axis of the cavity coincides with the z-axis of the cylindrical

coordinate system. A disturbance is initiated by spatially uniform shearing tractions applied to the surface

of the cavity. Hence our system (2.5), (2.10)–(2.12) is subject to quiescent initial conditions and the

boundary conditions
srzða; tÞ ¼ f ðtÞHðtÞ; srhða; tÞ ¼ gðtÞHðtÞ; ð2:13Þ
where f ðtÞ, gðtÞ are given functions and HðtÞ is the Heaviside unit function. Later, we shall consider in detail

axial shear waves generated by the boundary value
f ðtÞ ¼ r0 sin
pt
t�
½HðtÞ � Hðt � t�Þ�; ð2:14Þ
which represents a pulse of duration t� and maximum of r0.

We now introduce nondimensional variables defined by
ðŝrh; ŝrz; r̂0Þ ¼ ðsrh; srz; r0Þ=l; ðŵ; r̂Þ ¼ ðw; rÞ=a; ð̂t; t̂�Þ ¼ ðt; t�Þc=a;

v̂ ¼ v=c; x̂ ¼ ax=c; �̂ ¼ �; d̂ ¼ ad; ĉ ¼ 1; â ¼ 1:
Henceforth, we will use nondimensional variables, but for convenience omit the carets. The nondimensional
form of the Eqs. (2.5), (2.10)–(2.12) is then
srh ¼ V ðDÞrd; srz ¼ V ðDÞ�; ð2:15Þ

osrz þ srz ¼ ov
; ð2:16Þ
or r ot
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osrh
or

þ 2srh
r

¼ r
ox
ot

; ð2:17Þ

o�

ot
¼ ov

or
;

od
ot

¼ ox
or

: ð2:18Þ
If we eliminate the shear stresses srh and srz from the above equations, we obtain a hypberbolic system of

partial differential equations in terms of the vector
u ¼

u1
u2
�
d

0
BB@

1
CCA;
where
u1 ¼ rv; u2 ¼ r3x:
This system can be written in conservation form as
ut þ fðu; rÞr ¼ 0; r > 1; t > 0; ð2:19Þ

where the inhomogeneous flux function is given by
f ¼

�rV ðDÞ�
�r3V ðDÞd
�u1=r
�u2=r3

0
BB@

1
CCA: ð2:20Þ
For axial shear waves propagating alone, b ¼ 0 in (2.1). For this case, the analysis leads to a conservation

law (2.19) with
u ¼ u1
�

� �
; f ¼ �rV ð�Þ�

�u1=r

� �
: ð2:21Þ
For torsional shear waves propagating alone w ¼ 0, and the conservation law for torsional wave pro-

pagation is expressed in terms of
u ¼ u2
d

� �
; f ¼ �r3V ðrdÞd

�u2=r3

� �
: ð2:22Þ
An approximate solution to (2.19) with (2.21) for axial shear waves was obtained by Barclay (2004) using

Whitham’s nonlinearization technique. A similar solution can be obtained for torsional shear waves

propagating alone, but a solution cannot be constructed in an analogous way for combined axial and

torsional shear wave propagation. This problem is complicated by the fact that the governing system (2.19)

with (2.20) has two families of outgoing characteristics, and the nonlinearization technique does not apply.

The solution for axial shear is described next.
If c ¼ 0, then the system (2.19) is linear and can be solved by the Laplace transform
�f ðpÞ ¼ Lff ðtÞg ¼
Z 1

0

e�ptf ðtÞdt:
We construct the function
Uðr; aÞ ¼ 1

r

Z a

0

ðaþ r � gÞF ðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� gÞða� gþ 2rÞ

p dg ð2:23Þ
from the linear solution, where
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F ðtÞ ¼ L�1
�/ðpÞe�p

K1ðpÞ

( )
; ð2:24Þ

/ðtÞ ¼ �ð1; tÞ ð2:25Þ

and KnðxÞ is the modified Bessel function of the second kind. Then the approximate solution to the non-

linear problem is
� � Uðr; aÞ ð2:26Þ

on
t ¼ r � 1þ a�
XN
k¼1

ð2k þ 1Þck
Z r

1

U2kðr; aÞdr; ð2:27Þ
where the integration is carried out holding a constant. Eq. (2.27) defines aðr; tÞ implicitly and the combined

equations (2.26) and (2.27) provide a ‘‘nonlinearized’’ solution to the axial shear problem valid behind the

leading wavefront. The family of outgoing characteristics are given by aðr; tÞ ¼ const. It was shown by

Barclay (2004) that the above approximate solution is the leading term in a uniform expansion valid for

small values of the parameter kck. Regarding kck as a small parameter is a reasonable assumption, since as
we noted earlier, jckj � 1 for many real materials.

In the next section, we use the solution (2.26) and (2.27) to analyse shock development of an axial shear

wave. This solution can be written as
Uðr; aÞ ¼ 1ffiffiffiffiffi
2r

p
Z a

0

F ðgÞffiffiffiffiffiffiffiffiffiffiffi
a� g

p
1þ a�g

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a�g

2r

p dg ð2:28Þ
and then expanded, using the binomial theorem, as the series
Uðr; aÞ ¼
X1
k¼0

ð�1Þk�1ð2k þ 1Þ!
22kðk!Þ2ð2k � 1Þ

1

2r

� �kþ1
2
Z a

0

ða� gÞk�
1
2F ðgÞdg; ð2:29Þ
convergent for 06 a
2r < 1. In order to carry out our shock analysis, we make the further assumption that

a
r � 1. We then simplify the solution using the leading term from (2.29), i.e.
Uðr; aÞ ¼
ffiffiffiffiffi
p
2r

r
GðaÞ þO

a
r

� �3
2

� �
; ð2:30Þ
where
GðtÞ ¼ 1ffiffiffi
p

p
Z t

0

F ðgÞffiffiffiffiffiffiffiffiffiffi
t � g

p dg ¼ L�1
�/ðpÞe�pffiffiffi
p

p
K1ðpÞ

( )
; tP 0: ð2:31Þ
Our approximate solution now becomes
� �
ffiffiffiffiffi
p
2r

r
GðaÞ ð2:32Þ
on
t ¼ r � 1þ a�
XN
k¼1

ð2k þ 1ÞckhkðaÞSkðrÞ; aP 0; ð2:33Þ
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where
hðaÞ ¼ p
2
G2ðaÞ ð2:34Þ
and
SkðrÞ ¼
Z r

1

dr
rk

¼
ln r; k ¼ 1;
1� r1�k

k � 1
; kP 2:

(
ð2:35Þ
Eq. (2.33) is an approximate formula for the family of outgoing characteristics to our nonlinear axial shear

wave problem. The parameter a labels the characteristics and small values of a correspond to characteristics

near the leading wavefront. The pair of Eqs. (2.32) and (2.33) provide an approximate solution to the

problem valid for small values of the parameter kck and for a
r � 1, i.e. near the leading wavefront or at large

distances. The solution reveals that geometric attenuation is of order r�
1
2.

In view of (2.31), the solution does not involve the surface traction f ðtÞ directly but is expressed in terms

of /ðtÞ. Since /ðtÞ is defined by (2.25), it must be found from f ðtÞ through the constitutive equation, i.e.
f ¼ Uð/Þ � /þ 2
XN
k¼1

ck/
2kþ1: ð2:36Þ
So for a given surface traction f ðtÞ, the existence of /ðtÞ implies certain restrictions on the material

parameters. The following result will be useful in later work.

Theorem 1. Suppose that f ðtÞ is continuous on tP 0 and f ð0Þ ¼ 0.

(i) Eq. (2.36) defines a continuous function /ðtÞ on 06 t6 T for some T > 0 and /ð0Þ ¼ 0.

(ii) If U 0ð/ÞP 0 for all /, then T ¼ 1 in (i).

(iii) If 06 f ðtÞ6 r0 ¼ f ðt0Þ for tP 0, and U 0ð/ÞP 0 for 06/6/0, where r0 6Uð/0Þ, then T ¼ 1 in (i).

Also
06/ðtÞ6 �0 ¼ /ðt0Þ;
where �0 is the smallest solution to

r0 ¼ Uð�0Þ: ð2:37Þ
3. The shock pattern

Shear waves are generated at the boundary of an unstressed material by surface tractions (2.13). If f ðtÞ
and gðtÞ are continuous and
f ð0Þ ¼ gð0Þ ¼ 0;
then a continuous wave propagates into the material. The wave can break in finite time and a shock will

develop. We investigate what possible shock paths can occur. We carry out the details of our calculations

for axial shear wave propagation. The results for torsional shear waves will be similar, while the case of

combined axial and torsional shear waves requires further study.

To determine the possible shock paths for axial shear waves, we construct the envelope for the family of

characteristics (2.33). The envelope bounds regions in which the solution is multivalued and within which a

shock path must be fitted. Differentiating (2.33) with respect to a gives
Lðr; aÞ ¼ 1

h0ðaÞ ; ð3:1Þ
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where
Lðr; aÞ ¼
XN
k¼1

kð2k þ 1Þckhk�1ðaÞSkðrÞ: ð3:2Þ
We denote any real solution of (3.1) for r > 1 by
r ¼ EðaÞ ð3:3Þ
and let
t ¼ T ðaÞ ð3:4Þ
be the function obtained on using (3.3) in (2.33). The functions EðaÞ and T ðaÞ have the same domain, which

is a subset of a > 0, and (3.3), (3.4) are approximate parametric equations of the envelope. The approxi-

mations are valid provided kck � 1 and a
r � 1. We note that if N ¼ 1, then E and T can be found explicitly

and are
EðaÞ ¼ expf 3c1h
0ðaÞ

� 	�1g; T ðaÞ ¼ EðaÞ � 1þ a� hðaÞ
h0ðaÞ : ð3:5Þ
The envelope constructed from Eq. (3.1) can be used to determine the shock pattern for axial shear

waves generated by any surface traction f ðtÞ, provided we know certain analytic properties of hðaÞ and its
derivative h0ðaÞ. These properties are tabulated next.

We first consider the function hðaÞ. Using the convolution theorem and other results for the Laplace

transform together with the analytic behavior of the modified Bessel function K1ðpÞ, we can prove the

following theorem.

Theorem 2. Suppose that f ðtÞ is continuous and bounded on tP 0 and f ð0Þ ¼ 0. Suppose that either (ii) or (iii)

of Theorem 1 holds. Then hðaÞ is continuous bounded and positive on aP 0, i.e. there exists a constant M > 0

such that
06 hðaÞ6M ; aP 0: ð3:6Þ
Also hð0Þ ¼ 0.

This theorem provides us with most of the information we need to know about hðaÞ, but in order to carry
out our shock analysis, we require a more detailed knowledge of its derivative h0ðaÞ over the entire range

aP 0. It is therefore necessary to consider a restricted class of surface tractions f ðtÞ. In particular, we shall

focus attention on the breaking of a wave initiated at the boundary of the cavity by a continuous pulse of

finite duration. To make this idea precise we make the following definition.

Definition. Let f ðtÞ 2 Cð1Þ½0; t��, suppose that f ð0Þ ¼ 0 and
f ðtÞ ¼ 0; tP t�:
Also suppose that f 0ðtÞ > 0 on 0 < t < t0 and f 0ðtÞ < 0 on t0 < t < t�, so that
06 f ðtÞ6 r0 ¼ f ðt0Þ:
Then f ðtÞ is called a pulse of duration time t�. We note that f ðtÞ is continuous at t ¼ t�, but f 0ðtÞ can have a

finite jump at t�.
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A surface traction given by such a pulse models a shear stress on the wall of the cavity that rises con-

tinuously to a maximum r0 at t ¼ t0, then decreases to zero at t ¼ t� and is zero thereafter. Eq. (2.14) is an

example of a pulse of duration time t� with t0 ¼ t�=2. For such functions we can establish the following.

Theorem 3. Suppose that f ðtÞ is a pulse of duration time t� and suppose either (ii) or (iii) of Theorem 1 holds.

(i) /ðtÞ is also a pulse of duration time t� with maximum �0 ¼ /ðt0Þ, where �0 is the smallest solution to (2.37).

(ii) In addition to the results of Theorem 2, hðaÞ also satisfies
lim
a!1

hðaÞ ¼ 0

and

M ¼ max
06 a<1

fhðaÞg ¼ hða0Þ; ð3:7Þ

for some a0 > 0.
(iii) h0ðaÞ is bounded on aP 0 and continuous on aP 0 except possibly at a ¼ t�, where it will have a finite

jump if f 0ðtÞ has a finite jump at t ¼ t�. Also
h0ð0Þ ¼ 0; lim
a!1

h0ðaÞ ¼ 0

and h0ðaÞ is increasing on 0 < a < af for some af , and h0ðaÞ < 0 for a sufficiently large.

Theorem 3 provides information about h0ðaÞ for small and large values of a. In order to carry out

subsequent analysis, we also need to know the behavior of h0ðaÞ for intermediate values of a. Hence we plot

h0ðaÞ with (2.14) and for various choices of the parameters. This step reveals that h0ðaÞ has the qualitative
features shown in Fig. 1 for all choices of the parameters. In particular h0ðaÞ has a bimodal shape on

0 < a < a1 and the peak time t0 for f ðtÞ always lies in af < a < ab. In Fig. 1, the dotted line through t�
indicates the case in which f 0ðtÞ is discontinuous at t ¼ t�. If f 0ðtÞ is continuous, then h0ðaÞ is continuous at
*

t
0

α0 0
α bα

f
α

α)

α

h’(

t
*1 α

Fig. 1. Graph showing the behavior of h0ðaÞ for a pulse of duration time t�.
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a ¼ t� and the curve in the neighbourhood of t� is indicated by the hash marks. It is not tractable to prove in

general that when f ðtÞ is a pulse, then h0ðaÞ has the behavior shown in Fig. 1. Consequently, in the

remaining part of this section it will be assume that if f ðtÞ is a pulse of duration time t�, then the corre-

sponding function h0ðaÞ has the behavior shown in Fig. 1. This assumption does not appear to be a severe
restriction, since for any pulse we tested numerically, the function h0ðaÞ had this behavior. We always

assume that either (ii) or (iii) of Theorem 1 holds to ensure that Eq. (2.36) defines /ðtÞ on tP 0. It now

follows that if f ðtÞ is a pulse of duration time t�, then hðaÞ has two local maxima, M0 and M�, on aP 0

where
M0 ¼ hða0Þ
and
M� ¼ hðt�Þ or M� ¼ hða�Þ;
depending on whether f 0ðtÞ is continuous or discontinuous at t�. The maximum value of hðaÞ is then

M ¼ maxfM0;M�g.
We now obtain some results concerning the breaking of an axial shear wave that is initiated by a pulse of

duration time t� at the boundary of a cylindrical cavity. Since f ð0Þ ¼ 0, a wavefront leaves the boundary at
t ¼ 0 that is given by
t ¼ r � 1:
A second wavefront leaves the boundary at t ¼ t� and its equation is given by
t ¼ t� þ r � 1�
XN
k¼1

ð2k þ 1Þckhkðt�ÞSkðrÞ: ð3:8Þ
The solution to our axial shear wave problem is zero ahead of the leading wavefront. Prior to shock ini-

tiation, the solution behind the leading wavefront is continuous with continuous derivatives except possibly

along the back wavefront, where time and spatial derivatives of the solution will have a finite jump, if f 0ðtÞ
is discontinuous at t�. For this case the front is an acceleration front.

Our shock analysis uses the fact that that the envelope constructed from (3.1) bounds regions of the

rt-plane in which the solution (2.32) is multivalued. Such a region contains a shock path. Our results on

shock development are valid under the assumptions made in obtaining the nonlinearized solution, i.e. kck is
a small parameter and a

r � 1. For a pulse of duration time t� at the boundary, the relevant part of the

solution is given by the characteristics for which 06 a6 t�. So, in addition to the small parameter

assumption, our results are valid if t� � 1 or if breaking occurs for r � t�. If neither of these conditions

occur, then our results are valid if a � 1, i.e. if a shock develops near the leading wavefront. The first result

is an existence theorem for shock waves.

Theorem 4. Let f ðtÞ be continuous on tP 0 and f ð0Þ ¼ 0, and such that Eq. (2.36) defines a unique /ðtÞ on
tP 0. If there exists a subset of a > 0 on which
c1h
0ðaÞ > 0; ð3:9Þ
then an axial shear wave propagating from a cylindrical cavity into an unbounded medium that is initially at

rest and unstressed, will always break.

Theorem 4 is proven in Appendix A. It is immediate from the behavior of h0ðaÞ, that a wave initiated at
the boundary of a cylindrical cavity by a pulse of duration time t�, will always break if c1 6¼ 0.
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Solutions to (3.1) will lead to an envelope of the family of characteristics that can be made up of several

branches. A branch will bound a shock path. In order to describe each branch and the corresponding

shock, we make the following definitions.

Definition. A branch of the envelope of characteristics is called a primary branch if the parametric equations

(3.3), (3.4) have as domain either 0 < a < a0 or a0 < a < a1. The associated shock will be called a primary

shock.

Definition. A branch of the envelope of characteristics is called a secondary branch if the parametric

equations (3.3), (3.4) have as domain either a1 < a < t� or t� < a < 1 when f 0ðtÞ is discontinuous at t�, and
a1 < a < a� or a� < a < 1 when f 0ðtÞ is continuous at t�. The associated shock will be called a back shock.

Definition. If we replace the intervals in the above definitions by closed subintervals, then the corresponding

branch of the envelope of characteristics will be called a transient branch and the associated shock a

transient shock.

As we will see later, ðr; tÞ are unbounded on a primary or secondary branch and are bounded on a

transient branch. So a primary or back shock propagates indefinitely, but a transient shock propagates only

for a finite length of time. Also, an equivalent definition of a transient branch would be one on which ðr; tÞ
are bounded.

We now present some theorems which describe the possible shock paths that can occur after a con-

tinuous axial shear wave breaks.

Theorem 5. Let f ðtÞ be a pulse of duration time t�. Suppose c1 6¼ 0 and let PN ðxÞ be the polynomial of degree N
PNðxÞ ¼
XN
k¼1

ð2k þ 1Þckxk: ð3:10Þ
(i) If
m
06

m
06
ax
x6M0

fPN ðxÞg < 1; ð3:11Þ
then a primary shock develops near the front (or back) of the wave if c1 > 0 (or c1 < 0) and breaking

occurs at a cusp on the primary branch of the envelope.

(ii) If
ax
x6M�

fPN ðxÞg < 1; ð3:12Þ
then a back shock develops near or on the back acceleration front.

(iii) If P 0
N ðxÞ 6¼ 0 on 0 < x < M , then no other shocks occur.

Theorem 5 is proven in Appendix B. It shows that if c1 6¼ 0, a primary shock and a back shock will

always occur, and these are the only shocks that propagate indefinitely. As well, if P 0
N ðxÞ 6¼ 0 on 0 < x < M ,

then there are no other shocks. If P 0
N ðxÞ is zero at least once on 0 < x < M , then a transient shock could also

occur for axial shear wave propagation. We shall describe in detail the situation when P 0
NðxÞ has a single

zero. The analysis when there are several zeros would be handled in a similar way.

If x1 is the only zero of P 0
N ðxÞ, where 0 < x1 < M , then two transient shocks could possibly develop. If

0 < x1 < M0, then a transient shock could occur, where the domain of (3.3), (3.4) would be a subset of
0 < a < a1. For this case, we will use the terminology primary transient shock. If 0 < x1 < M�, then a
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transient shock could occur near the back acceleration front. Our theorems on transient shocks are stated

without proof. As in Theorem 5, the proofs involve examining Eq. (3.1). The next theorem gives condition

under which a single primary transient shock occurs.

Theorem 6. Let f ðtÞ be a pulse of duration time t�. Suppose c1 6¼ 0, (3.11) holds and P 0
N ðxÞ has a single zero, x1,

on 0 < x < M0, where x1 is a simple zero. Define
r1ðaÞ ¼
hðaÞ
x1

;

Q1ðaÞ ¼ h0ðaÞLðr1ðaÞ; aÞ
and let að1Þ1 < a < að2Þ1 be the subinterval of 0 < a < a1 on which r1ðaÞ > 1. Let
Qðc1Þ ¼
max

a0 6 a6 að2Þ
1

fQ1ðaÞg; if c1 > 0;

max
að1Þ
1

6 a6 a0

fQ1ðaÞg; if c1 < 0:

8><
>: ð3:13Þ
(i) If Qðc1Þ > 1, then the envelope of characteristics has a closed bounded branch ða primary transient

branchÞ. The branch has two cusps at which ðr; tÞ obtain their minimum values ðrðtrÞB ; tðtrÞB Þ at one of the

cusps, and their maximum values ðrðtrÞT ; tðtrÞT Þ at the other. The quantities rðtrÞB and tðtrÞB are the breaking dis-

tance and time of the transient shock. The quantities rðtrÞT and tðtrÞT are the distance and time at which the

transient shock terminates. The primary transient shock breaks and terminates at the front (or back) of the

wave if c1 < 0 (or c1 > 0).

(ii) If Qðc1Þ6 1, then a primary transient shock does not occur.

If 0 < x1 < M�, then a transient shock could occur near the back acceleration front, and we could
establish a similar result with M0 replace by M�.

If all the material parameters ck are nonnegative, then P 0
N ðxÞ 6¼ 0 on 06 x6M and a transient shock

never occurs. For several materials considered by Alexander (1968), Tschoegl (1971), James et al. (1975)

and Haines and Wilson (1979), N ¼ 2 and c1c2 < 0. In the remaining part of this section, we list results for

this interesting situation. For completeness, we first summarize the restrictions on the material parameters

imposed by Theorem 1.

Theorem 7. Let f ðtÞ be a pulse of duration time t�.
(i) If ck P 0 for all k, then /ðtÞ exists and is a pulse of duration time t�.
(ii) If N ¼ 2, c1 < 0, c2 > 0 and
c2
 P
9

10
c21;
then /ðtÞ exists and is a pulse of duration time t�.
(iii) If N ¼ 2, c1 < 0, c2 > 0 and
c2 <
9

10
c21; ð3:14Þ

r0 6
4

5

ffiffiffi
c

p � 2c1
ð ffiffiffi

c
p � 3c1Þ

3=2
; ð3:15Þ
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where
c ¼

�

�

�

�

9c21 � 10c2; ð3:16Þ
then /ðtÞ exists and is a pulse of duration time t�.
(iv) If N ¼ 2, c1 > 0, c2 < 0 and (3.15) holds then /ðtÞ exists and is a pulse of duration time t�.

Theorem 8. Let f ðtÞ be a pulse of duration time t� and suppose that N ¼ 2, c1c2 < 0 and one of (ii)–(iv) of

Theorem 7 holds.

(i) If
c1
c2

P
10

3
M0; ð3:17Þ
then a primary transient shock will not occur.

(ii) If
c1
c2

<
10

3
M0 ð3:18Þ
and Qðc1Þ6 1, where Qðc1Þ is given by (3.13) and

Q1ðaÞ ¼ h0ðaÞ 3c1½1f þ ln r1ðaÞ� þ 10c2hðaÞg; r1ðaÞ ¼ � 10c2
3c1

hðaÞ;

then a primary transient shock will not occur.

Theorem 9. Let f ðtÞ be a pulse of duration time t� and suppose that N ¼ 2, c1c2 < 0 and one of (ii)–(iv) of
Theorem 7 holds. If
� c1
c2

<
10

3
M0 ð3:19Þ
and Qðc1Þ > 1, and one of the following holds.

(i) c1 > 0, c2 < 0 and
9c21
20c2

< 1; ð3:20Þ
(ii) c1 < 0, c2 > 0 and
5M0

3
< � c1

c2
; ð3:21Þ
(iii) c1 < 0, c2 > 0 and
c1
c2

<
5M0

3
; ð3:22Þ

M0ð3c1 þ 5c2M0Þ < 1: ð3:23Þ

Then a primary transient shock occurs, and the shock breaks and terminates at a cusp on the primary transient

branch.

A similar result can be established concerning a transient shock near the back acceleration front. As well

if N P 3, then P 0
N ðxÞ could have more than one zero. We could then have several primary and back transient
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shocks occurring. The above theorems indicate how the analysis would proceed for this situation. Finally,

we note that if c1 ¼ 0, only transient shocks can develop.
4. Numerical results

In this section, we illustrate our theorems on shock development of axial shear waves. The theorems are

used to predict what shocks will occur and to estimate the breaking time of each one. The envelope of

characteristics can be found by solving (3.1) and a region bounded by a branch of the envelope approxi-
mates the location of the corresponding shock path. In order to use the theorems efficiently, it is necessary

to readily evaluate hðaÞ and h0ðaÞ.
The function hðaÞ is defined in terms of GðaÞ by (2.34) and since GðaÞ is given by (2.31), we can evaluate

it by numerically inverting a Laplace transform. In order to carry out the numerical inversion, we need an

analytic expression for �/ðpÞ ¼ Lf/ðtÞg. So we need an appropriate approximation to /ðtÞ in terms of the

given boundary value f ðtÞ. From (2.36), a first order approximation is
/ðtÞ ¼ f ðtÞ � 2
XN
k¼1

ckf
2kþ1ðtÞ þO kck2

� �
;

which is uniform in t when f ðtÞ is a pulse of duration time t�. This approximation is consistent with the

approximation made in constructing the nonlinearized solution, but is not particularly useful when r0 > 1.
Since /ðtÞ is a pulse of duration time t� when f ðtÞ is a pulse of duration time t�, a useful approximation is
/ðtÞ ¼ �0
r0

f ðtÞ;
where �0 is found from (2.37). This simple approximation preserves the appropriate character of the

boundary value and will be used to find �/ðpÞ when r0 > 1.

To test the usefulness and validity of the theorems of the previous section, we solve the system (2.19) and
(2.21) numerically. We use the relaxation scheme for conservation laws developed by Jin and Xin (1995).

This method has advantages over other high-order accurate schemes. It uses neither Riemann solvers

spatially nor nonlinear equation solvers temporally. The method has excellent shock capturing abilities and

shows no numerical dispersion at the shock. When implementing the relaxation scheme, the value of /ðtÞ is
found by solving the nonlinear equation (2.36) numerically.

All results are for the boundary value (2.14). Since f 0ðtÞ has a finite jump at t ¼ 0; t�, the leading and back

wavefronts are acceleration fronts. Results in Fig. 2 are for r0 ¼ 2, t� ¼ 1 and N ¼ 1, c1 ¼ 0:1. Using

Theorem 5, we find that a primary shock breaks near the front of the pulse at ðrðpÞB ; tðpÞB Þ ¼ ð1:84; 0:92Þ, a
back shock breaks at ðrðbÞB ; tðbÞB Þ ¼ ð4:72; 4:69Þ and no other shocks occur. Fig. 3 shows the shock pattern, or

more precisely, the primary and secondary branch of the envelope together with the acceleration fronts.

The back acceleration front is found using (3.8). The numerical solution shown in Fig. 2 exhibits the
behavior predicted by our shock theorems. The estimate of breaking times are reasonably accurate. A

primary shock is clearly visible at the front of the pulse for tP 2 and a small back shock can be seen for

tP 5.

The remaining numerical results are for a material with N ¼ 2 and c1 ¼ �0:029, c2 ¼ 0:0027. These
values are found from the set of Cij for the second rubber-like material considered by Haines and Wilson

(1979). We consider first a pulse of duration time t� ¼ 1 and maximum r0 ¼ 2. Theorem 5 indicates that

a primary shock breaks near the back of the pulse at ðrðpÞB ; tðpÞB Þ ¼ ð3:06; 2:94Þ and a back shock does not

occur in finite time. Our theorems also indicate that no transient shocks occur. The shock pattern is
shown in Fig. 4 and the numerical solution in Fig. 5. The primary shock is clearly visible at the back of
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Fig. 3. Branches of the envelope for N ¼ 1, c1 ¼ 0:1 and boundary value (2.14) with r0 ¼ 2, t� ¼ 1.
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D.W. Barclay / International Journal of Solids and Structures 41 (2004) 5265–5284 5279
the pulse for tP 3. Finally, we consider a pulse with r0 ¼ 4 and t� ¼ 1. Theorem 9 reveals that a primary
transient shock breaks at ðrðtrÞB ; tðtrÞB Þ ¼ ð1:47; 0:79Þ and terminates at ðrðtrÞT ; tðtrÞT Þ ¼ ð6:08; 5:94Þ. There is no

back transient shock. Also by Theorem 5, we find that the primary shock breaks near the back of the
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Fig. 4. Primary branch of the envelope for N ¼ 2, c1 ¼ �0:029, c2 ¼ 0:0027 and boundary value (2.14) with r0 ¼ 2, t� ¼ 1.
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pulse at ðrðpÞB ; tðpÞB Þ ¼ ð2:04; 1:94Þ, and that a back shock does not break in finite time. The numerical
solution in Fig. 6 shows the pulse as it leaves the boundary. The figure shows the development of the

transient shock near the front of the pulse and the primary shock at the back. Fig. 7 shows the numerical
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solution until after the transient shock terminates. The shock pattern obtained from our shock theorems

is shown in Fig. 8.
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Fig. 6. Variation of srz with nondimensional r at t ¼ 0:1; 0:2; . . . ; 2 for N ¼ 2, c1 ¼ �0:029, c2 ¼ 0:0027 and boundary value (2.14) with

r0 ¼ 4, t� ¼ 1.
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5. Conclusions

The theorems presented in Section 3 provide a complete picture of the shock pattern for axial shear wave

propagation after a continuous pulse breaks. A primary and back shock always occur if and only if c1 6¼ 0.

The primary shock breaks at the front (or back) of the pulse if c1 > 0 (or c1 < 0). Since
max
t� 6 a<1

jh0ðaÞj � max
a0 6 a6 a1

jh0ðaÞj;
in all our numerical work, a back shock was not observed if c1 < 0.

The polynomial PN ðxÞ, whose coefficients involve the material parameters, plays a significant role in our
analysis. If P 0

N ðxÞ 6¼ 0 on 0 < x < M , then only a primary and a back shock will develop. If P 0
N ðxÞ ¼ 0 on

0 < x < M , then a transient shock can occur. The phenomenon of a transient shock has not been reported

in other studies on nonlinear axially symmetric shear wave propagation. Conditions concerning the exis-

tence of a transient shock were given when P 0
N ðxÞ vanishes only once on 0 < x < M . If N ¼ 2 then P 0

N ðxÞ has
only one zero. So this case is of particular interest, since most experimental results found in the literature

for materials modelled by a strain energy function (1.3) use N ¼ 2.

A knowledge of certain analytical properties of hðaÞ and its derivative h0ðaÞ is necessary in order to

determine the shock pattern for axial shear waves. The function hðaÞ is defined by (2.34) and is related to
the boundary value through the inverse transform (2.31). Our shock pattern theorems are valid for a wave

generated by a pulse f ðtÞ of finite duration time, provided we assume that h0ðaÞ has the behavior shown in

Fig. 1. This assumption appears to be reasonable since, for any particular pulse f ðtÞ that we considered, the
corresponding function h0ðaÞ had this behavior.

The shock pattern determined in this paper is for axial shear wave propagation. Similar results can be

obtained for torsional shear waves propagating alone. For combined axial and torsional shear wave

propagation, the situation is more complicated. This case needs further examination.
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Finally, as the numerical solutions indicate, our shock theorems provide a direct and accurate way of

estimating the breaking distance and time of a shock. As well, the region bounded by a branch of the

envelope of characteristics contains a shock path, giving an approximate location of the shock path.

Appendix A. Proof of Theorem 4

From the definition (3.1) of Lðr; aÞ, we have
Lð1; aÞ ¼ 0;
and for fixed a
Lðr; aÞ ¼ 3c1 ln r 1

�
þO

1

ln r

� ��
; as r ! 1;

oLðr; aÞ
oa

¼ 3c1
r

1

�
þO

1

r

� ��
; as r ! 1:
As well, Lðr; aÞ is a continuous function of ðr; aÞ for rP 1, aP 0. So if (3.9) holds, then Eq. (3.1) always

has a solution in r > 1. Hence an envelope always exists and a wave will break, at least for r sufficiently

large.

Appendix B. Proof of Theorem 5

(i) Observe that Lðr; aÞ is a continuous function of ðr; aÞ on rP 1, aP 0 and such that Lð1; aÞ ¼ 0 and for

fixed a, Lðr; aÞ ! 1 as r ! 1.

Now consider first the case in which P 0
NðxÞ 6¼ 0 on 0 < x < M and note from (3.2) that
oL
or

¼ 1

r
P 0
N

hðaÞ
r

� �
:

Since 06 hðaÞ6M and rP 1, then 06 hðaÞ
r 6M . So for fixed aP 0, Lðr; aÞ is an increasing (or decreasing)

function of r on r > 1 when c1 > 0 (or c1 < 0). It follows that Eq. (3.1) has a unique solution (3.3) on

0 < a < a0 (or a0 < a < a1Þ if c1 > 0 (or c1 < 0). Hence we have a primary branch. The solution EðaÞ and its

derivative E0ðaÞ are continuous and
lim
a!0þ

EðaÞ ¼ 1; lim
a!a0�

EðaÞ ¼ 1; c1 > 0;

lim
a!a0þ

EðaÞ ¼ 1; lim
a!a1�

EðaÞ ¼ 1; c1 < 0:
If N ¼ 1 and c1 > 0 (or c1 < 0), then EðaÞ decreases steadily to a minimum at af (or ab) then increases

steadily. If N P 2, this behavior is not strictly true, but since
E0ðaÞ oL
or

¼ � h00ðaÞ
h02ðaÞ þOðkckÞ;
it will be true within our small parameter assumption, but now EðaÞ will attain its minimum in a neigh-
bourhood of af (or ab) if c1 > 0 (or c1 < 0).

Now a straight-forward calculation using (2.33) and (3.1) reveals that
T 0ðaÞ ¼ E0ðaÞ 1

�
� PN

hðaÞ
EðaÞ

� ��
: ðB:1Þ
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So (3.11) implies that T 0ðaÞ and E0ðaÞ have the same sign on 0 < a < a1. Hence ðr; tÞ decrease steadily from

infinity on the primary branch to a cusp ðrðpÞB ; tðpÞB Þ, where r and t obtain their minimum values, and then

increase steadily back to infinity. The quantities rðpÞB and tðpÞB are the breaking distance and time of the

primary shock. Since af < t0 < ab, the characteristics labelled a ¼ af and a ¼ ab leave the boundary r ¼ 1
before and after t0 respectively. So the primary shock breaks at the front (or back) of the wave if c1 > 0 (or

c1 < 0).

If P 0
N ðxÞ ¼ 0 on 0 < x < M , then L is not necessarily monotonic on r > 1, but there will exist r0ðaÞ > 1

such that for fixed aP 0, Lðr; aÞ is monotonic for r > r0ðaÞ. It then follows that Eq. (3.1) has a unique

continuous solution (3.3) on the entire interval 0 < a < a0 (or a0 < a < a1) if c1 > 0 (or c1 < 0). So we again

get a primary branch with all the properties given above. For this case, other solutions can also exist but

each would define a continuous function EðaÞ on a closed subinterval of 0 < a < a0 or a0 < a < a1. The
corresponding parametric equations would then give a transient branch.

(ii) Since the behavior of h0ðaÞ on a1 < a < 1 is similar to the behavior on 0 < a < a1, the arguments

used in (i) can be applied to show the existence of a secondary branch. Its structure is the same as the

primary branch, when f 0ðtÞ is continuous at t�, and breaking occurs at a cusp, ðrðbÞB ; tðbÞB Þ, on the envelope

near the back acceleration front. If f 0ðtÞ is not continuous at t�, the secondary branch has a different

structure. For this case, when c1 > 0, the secondary branch comes in from infinity and terminates at the

back acceleration front. If c1 < 0, the secondary branch goes out from the back acceleration front to

infinity. In either case, when f 0ðtÞ is discontinuous at t�, the back shock path is bounded by the envelope

and the back acceleration front, and breaking occurs at the back acceleration front.
(iii) As shown in (i) and (ii) above, when P 0

N ðxÞ 6¼ 0 on 0 < x < M , we only obtain a primary and a

secondary branch of the envelope of characteristics. So, for this case, only a primary and a back shock will

occur.
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